Convolution quadrature for the wave equation with impedance boundary conditions
نویسندگان
چکیده
We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representations of analytic solutions which allow to investigate the effect of the impedance coefficient on the acoustic pressure analytically. We have performed systematic numerical experiments to study the convergence rates as well as the sensitivity of the acoustic pressure from the impedance coefficients. Finally, we apply this method to simulate the acoustic pressure in a building with a fairly complicated geometry and to study the influence of the impedance coefficient also in this situation. Preprint No 01/2016 Institute of Applied Mechanics
منابع مشابه
Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملFast convolution quadrature based impedance boundary conditions
We consider an eddy current problem in time-domain relying on impedance boundary conditions on the surface of the conductor(s). We pursue its full discretization comprising (i) a finite element Galerkin discretization by means of lowest order edge elements in space, and (ii) temporal discretization based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra integral equation in ...
متن کاملDiffraction of a Plane Wave by a Circular Cone with an Impedance Boundary Condition
We consider the boundary-value problem for the Helmholtz equation in a circular cone with an impedance boundary condition on its face. A new approach for its solution is proposed. The scheme of solution includes applying the Kontorovich–Lebedev transform, derivation of a secondorder difference equation in a strip of a complex variable, and reduction of the latter to an integral equation of the ...
متن کاملSpace - time BIE methods for non homogeneous exterior wave equation problems . The Dirichlet case . ∗
In this paper we consider the (2D and 3D) exterior problem for the non homogeneous wave equation, with a Dirichlet boundary condition and non homogeneous initial conditions. First we derive two alternative boundary integral equation formulations to solve the problem. Then we propose a numerical approach for the computation of the extra “volume” integrals generated by the initial data. Finally, ...
متن کاملBuckling and Thermomechanical Vibration Analysis of a Cylindrical Sandwich Panel with an Elastic Core Using Generalized Differential Quadrature Method
In this paper, the vibrational and buckling analysis of a cylindrical sandwich panel with an elastic core under thermo-mechanical loadings is investigated. The modeled cylindrical sandwich panel as well as its equations of motions and boundary conditions is derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time in the present study, various bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 334 شماره
صفحات -
تاریخ انتشار 2017